
CIS 4004: PHP – Part 1 Page 1 Dr. Mark Llewellyn ©

CIS 4004: Web-Based Information Technology

Spring 2011

Introduction to PHP – Part 1

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cis4004/spr2011

CIS 4004: PHP – Part 1 Page 2 Dr. Mark Llewellyn ©

Introduction to PHP

• PHP was created by Rasmus Lerdorf in 1994, He first used

it to build extensions into HTML documents to enhance his

personal home page.

• In fact, PHP was originally called Personal Home Page. As

Lerdorf freely distributed the program source, PHP gained

popularity and became an Apache Software Foundation

project. Eventually, PHP’s name was changed to PHP

Hypertext Preprocessor.

• In late 2010 there were slightly more than 1 trillion websites

registered globally. PHP estimates that more than 230

million websites are PHP enabled to some extent.

CIS 4004: PHP – Part 1 Page 3 Dr. Mark Llewellyn ©

Introduction to PHP

• PHP scripts can be created with any text editor, although

Notepad++ is quite convenient for PHP scripting. I’ll

primarily use it in the examples. NetBeans also provides a

fairly decent environment for PHP development including a

debugger.

• PHP script files should be saved with a .php extension.

• When PHP is embedded inside XHTML documents, as it

commonly is, several different delimiters can be used. These

are illustrated on the next page.

CIS 4004: PHP – Part 1 Page 4 Dr. Mark Llewellyn ©

Introduction to PHP

Common PHP delimiter in

XHTML documents where

more that one type of

embedded script might be

used.

CIS 4004: PHP – Part 1 Page 5 Dr. Mark Llewellyn ©

Introduction to PHP

Standard PHP delimiter. If

your PHP installation set-up
has short_open_tag

enabled, you can actually
remove the php from the

delimiter.
If asp_tags are enabled you

cal use <% and %> as

delimiters.

Note: To ensure portable, reusable code, it is

best to use the standard tags instead of the

short or ASP-style tags for the simple reason

that server configurations are unique - use the

standard style because you know you can count

on it as part of any configuration.

CIS 4004: PHP – Part 1 Page 6 Dr. Mark Llewellyn ©

Introduction to PHP

• As with any programming language, good practice in writing

scripts would require comments to be included within the

script.

• In-line comments in PHP are indicated with two forward

slashes (//).

• Comments can appear any where in the script file and can

appear in any position on any line.

• Multiple line comments are delimited with /* and */

• Most PHP implementations also allow # to delimit in-line

comments.

CIS 4004: PHP – Part 1 Page 7 Dr. Mark Llewellyn ©

Variables In PHP

• You can select just about any set of characters for a variable

name in PHP, but they must:

– Use a dollar sign ($) as the first character.

– Use a letter or an underscore character (_) as the second

character.

• As with any programming/scripting language, good practice

would suggest selecting variable names that help describe their

function. For example $counter is more descriptive than $c

or $ctr.

• You can use the echo statement or the print() function to

output data in PHP. Which you use is more a matter of personal

taste or style than anything else.

CIS 4004: PHP – Part 1 Page 8 Dr. Mark Llewellyn ©

Variables In PHP
• To print out the value of a variable $x, write the following PHP statement:

print ("$x");

• The following code will output “Candice is 26 years old”.

$age=26;

print (“Candice is $age years old.");

• The next page illustrates a full example using PHP variables.

Note: Constants are defined in PHP using the built-in define() function. As its name would imply a

constant’s value cannot be changed once it is set.

CIS 4004: PHP – Part 1 Page 9 Dr. Mark Llewellyn ©

Variables In PHP

CIS 4004: PHP – Part 1 Page 10 Dr. Mark Llewellyn ©

Data Types In PHP

• PHP is a dynamically typed language. This basically means

that variables are not assigned a type when the variable is

declared. Variable type is determined through assignment.

• The standard data types in PHP are shown in the table below:

Data Type Example Description

Boolean true Either true or false

Integer 5 A whole number

Float or Double 3.14159 A floating-point number

String “Hello” A collection of characters

Object An instance of a class

Array An ordered set of keys and values

Resource Reference to a 3rd party resource (e.g. a database)

NULL An uninitialized variable

CIS 4004: PHP – Part 1 Page 11 Dr. Mark Llewellyn ©

Data Types In PHP

Dynamic Data Typing Example

The concatenation operator in

PHP is the period.

CIS 4004: PHP – Part 1 Page 12 Dr. Mark Llewellyn ©

Data Types In PHP

• Technically speaking, there are two types of strings in PHP:

parsed and unparsed.

• Parsed strings are defined using double quotes and are parsed

by PHP.

• Unparsed strings are defined using single quotes and are taken

as is (they are not parsed).

• What’s the difference? Within a parsed string, any references

to variables within that string will be automatically replaced

with their respective values, whereas within an unparsed string

nothing is replaced.

• The example on the next page will clarify the differences.

CIS 4004: PHP – Part 1 Page 13 Dr. Mark Llewellyn ©

Data Types In PHP

CIS 4004: PHP – Part 1 Page 14 Dr. Mark Llewellyn ©

Arithmetic Operations In PHP
• PHP supports all normal arithmetic operators,

with the normal semantic associated with each

operator.

Table 2.1 Common PHP Numeric Operators

Operator Effect Example Result

+ Addition $x = 2 + 2; $x is assigned 4.

- Subtraction $y = 3;

$y = $y – 1;

$y is assigned 2.

/ Division $y = 14 / 2;

$y is assigned 7.

* Multiplication $z = 4;

$y = $z * 4;

$y is assigned 16.

% Remainder $y = 14 % 3; $y is assigned 2.

• PHP supports automatic

increment and decrement

operations in both prefix

and postfix form, i.e., --

and ++.

• Using an unassigned

variable in an expression

does not generate an

error, the value is simply

assumed to be null.

<?php

$y = 3;

$y = $y + $x + 1;

print(“x=$x y=$y”);

?>

The output is: x=y=4

CIS 4004: PHP – Part 1 Page 15 Dr. Mark Llewellyn ©

String Variables In PHP

• PHP supports character string variables and this is a widely

used aspect of PHP in handling form data.

• Be careful in PHP not to mix numeric and string types together

in an expression.

• For example, you might expect the following statements to

generate an error message, but they will not. Instead, they will

output “y=1”.

<?php

$x = “banana”;

$sum = 1 + $x’

print(“y=$sum”);

?>

CIS 4004: PHP – Part 1 Page 16 Dr. Mark Llewellyn ©

String Variables In PHP
• The string concatenation operator in PHP is the period as shown

below:

<?php

$firstname = “Megan”;

$lastname = “Fox”

$fullname = $firstname . $lastname;

print(“Full name = $fullname”);

?>

The output of this script would be: Fullname=MeganFox

You can also use double quotation marks to create concatenation directly. Using the above

example you could do the following: $fullname2 = “$firstname $lastname”; This would have the

same effect as: $fullname2 = $firstname . $lastname;

CIS 4004: PHP – Part 1 Page 17 Dr. Mark Llewellyn ©

String Variables In PHP
• PHP supports a large variety of string handling functions. A

few of the more commonly used ones are illustrated on the next

few pages.

• Most string functions require you to send them one or more

arguments.

• Arguments are input values that functions use in the processing

they do.

• Often functions return a value to the script based on the input

arguments. For example:

$len = strlen($name);

Variable or value to work with

Name of function

Receives the number of

characters in $name

CIS 4004: PHP – Part 1 Page 18 Dr. Mark Llewellyn ©

String Variables In PHP

strlen() function:

• This function returns the number of characters in the string

argument to the function. Consider the following script:

<?php

$comments = "Good Job";

$len = strlen($comments);

print ("Length=$len");

?>

This PHP script would output “Length=8”.

CIS 4004: PHP – Part 1 Page 19 Dr. Mark Llewellyn ©

String Variables In PHP

trim() function:

• This function removes any blank characters from the beginning

and end of a string. For example, consider the following script:

<?php

$in_name = “ Megan Fox ";

$name = trim($in_name);

print ("name=$name$name");

?>

This PHP script would output “name=Megan FoxMegan Fox”.

CIS 4004: PHP – Part 1 Page 20 Dr. Mark Llewellyn ©

String Variables In PHP

strtolower()and strtoupper functions:

• These functions return the argument string in all uppercase or all

lowercase letters, respectively. For example, consider the

following script:

<?php

$inquote = “Now Is The Time";

$lower = strtolower($inquote);

$upper = strtoupper($inquote);

print(“upper=$upper lower=$lower”);

?>

This PHP script would output “upper=NOW IS THE TIME lower =

now is the time”

CIS 4004: PHP – Part 1 Page 21 Dr. Mark Llewellyn ©

String Variables In PHP

substr()function:

• This function enables a PHP script to extract a portion of the

characters in a string variable. The general syntax is:

$part = substr($name, 0, 5);

Assign the

extracted sub-

string into this

variable.

Extract from this

string variable.

Starting position to

start extraction from.

Number of characters

to extract. (If omitted it will

continue to extract until the end

of the string.)

CIS 4004: PHP – Part 1 Page 22 Dr. Mark Llewellyn ©

String Variables In PHP

substr()function:

• The substr() function enumerates character positions starting with

0 (not 1),

• For example, in the string “Homer”, the “H” would be position

0, the “o” would be position 1, the “m” position 2, and so on.

• For example, the following would output “Month=12 Day=25”.

<?php

$date = "12/25/2002";

$month = substr($date, 0, 2);

$day = substr($date, 3, 2);

print ("Month=$month Day=$day");

?>

CIS 4004: PHP – Part 1 Page 23 Dr. Mark Llewellyn ©

String Variables In PHP

substr()function:

 This example does not include the third argument (and thus

returns a substring from the starting position to the end of the

search string).

<?php

$date = "12/25/2010";

$year = substr($date, 6);

print ("Year=$year");

?>

 The above script segment would output “Year=2010”.

CIS 4004: PHP – Part 1 Page 24 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

• PHP contains the normal control statements that handle decision

making and iteration within a script.

• Normal logical operators are all supported with their standard

semantic.

• As with many modern programming and scripting languages

remember to use == in a logical comparison operation and not =.

The single equal sign is an assignment operator and as such is

always true. No syntax error is generated.

• The table on the following page illustrates the common logical

operators in PHP.

Note: PHP also contains a === logical comparison operator (called the identical operatior). This

binary operator returns true iff its two operands are equal in value and also have the same type.

CIS 4004: PHP – Part 1 Page 25 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

 Test

Operator

Effect Example Result

== Equal to if ($x == 6){

 $x = $y + 1;

 $y = $x + 1;

}

Run the second and third

statements if the value of $x is

equal to 6.

!= Not equal to if ($x != $y) {

 $x = 5 + 1;

}

Run the second statement if the

value of $x is not equal to the

value of $y.

< Less than if ($x < 100) {

 $y = 5;

}

Run the second statement if the

value of $x is less than 100.

> Greater than if ($x > 51) {

 print "OK";

}

Run the second statement if the

value of $x is greater than 51.

>= Greater than or

equal to

if (16 >= $x) {

 print "x=$x" ;

}

Run the second statement if 16

is greater than or equal to the

value of $x.

<= Less than or

equal to

if ($x <= $y) {

 print "y=$y" ;

 print "x=$x" ;

}

Run the second and third

statements if the value of $x is

less than or equal to the value of

$y.

CIS 4004: PHP – Part 1 Page 26 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

• PHP includes several different forms of logical control statements

(decision statements).

• The if statement has the form:

if (expression) {

//code to execute if expression evaluates to true

}

• The if-else statement has the form:

if (expression) {

//code to execute if expression evaluates to true

} else {

//code to execute when expression evaluates to false

}

CIS 4004: PHP – Part 1 Page 27 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

• There is also an elseif clause that can be used with if

statements for a nested stack of if statements. The basic syntax

for this clause is:

if (expression) {

//code to execute if expression evaluates to true

} elseif (another expression) {

//code to execute when expression evaluates to false

//and another expression evaluates to true

} else {

//code to execute if all expressions evaluate to false

}

CIS 4004: PHP – Part 1 Page 28 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

• PHP includes a switch statement which allows for multiple

options for a single evaluation of an expression. The basic syntax

for the switch statement is:

switch (expression) {

case result1:

//code to execute if expression evaluates to result1

break;

case result2:

//code to execute if expression evaluates to result2

break;

. . .

default:

//code to execute if no break has been encountered

}

CIS 4004: PHP – Part 1 Page 29 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

• The following example uses an input form (XHTML) and two

values are extracted from the form (grade1 and grade2),

passed to a PHP script which determines the average score, the

maximum score and assigns a grade to the average for the

student’s scores.

• We’ll get much more into forms and form handling in PHP later,

but this simple example will illustrate several of the common

threads that appear in form handling in PHP (and server side

scripting in general).

CIS 4004: PHP – Part 1 Page 30 Dr. Mark Llewellyn ©

decisions.html

CIS 4004: PHP – Part 1 Page 31 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

Executing
decisions.html

User enters two

scores, clicks
submit button.

CIS 4004: PHP – Part 1 Page 32 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

Clicking the submit

button triggers the

action of the form

and invokes the

script
decisions.php

The script

generates this

page. The PHP

script is shown on

the next page.

CIS 4004: PHP – Part 1 Page 33 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 1 Page 34 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

• PHP supports three types of iterative constructs:

– the while loop (both top and bottom tested versions are supported)

– the for loop

– and the foreach loop.

• The for and while loops act as you would expect given your

knowledge of other programming languages. The foreach loop

applies specifically to arrays in PHP. We’ll look at the foreach

loop later.

• The next couple of pages show the basic syntax for each of the

iterative constructs in PHP.

CIS 4004: PHP – Part 1 Page 35 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

• The syntax for the top tested version of the while loop is:

while (expression) {

//statements to execute

}

• The syntax for the bottom tested version of the while loop is:

do {

//statements to execute

} while (expression);

CIS 4004: PHP – Part 1 Page 36 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

• The basic syntax for the for statement is:

for (initialization expr; test expr; modifying expr) {

//statements to be executed

}

• The next couple of pages illustrates some of the nuances of

dealing with counted loops in PHP.

CIS 4004: PHP – Part 1 Page 37 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

CIS 4004: PHP – Part 1 Page 38 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

CIS 4004: PHP – Part 1 Page 39 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

What do you expect will happen

when $counter == 0?

CIS 4004: PHP – Part 1 Page 40 Dr. Mark Llewellyn ©

Division by zero is not a fatal error

in PHP. Instead a warning is

generated an execution continues.

The possible fixes are shown on

the next two pages.

CIS 4004: PHP – Part 1 Page 41 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

Use a break statement to terminate

the loop in a division by zero case.

CIS 4004: PHP – Part 1 Page 42 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

Use a break statement to skip the

division by zero case.

CIS 4004: PHP – Part 1 Page 43 Dr. Mark Llewellyn ©

Nested Loop Example

CIS 4004: PHP – Part 1 Page 44 Dr. Mark Llewellyn ©

Nested Loop Example -

Output

CIS 4004: PHP – Part 1 Page 45 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

• The example on the next couple of pages illustrates a while loop.

Again, I’ve used a form to extract user input. This time the user

input sets the lower and upper limit on the loop.

CIS 4004: PHP – Part 1 Page 46 Dr. Mark Llewellyn ©

whileloop.html

CIS 4004: PHP – Part 1 Page 47 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

Executing
whileloop.html

User enters lower

and upper limits,
clicks submit button.

CIS 4004: PHP – Part 1 Page 48 Dr. Mark Llewellyn ©

Controlling Script Flow In PHP

Clicking the submit

button triggers the

action of the form

and invokes the

script
whileloop.php

The script

generates this

page. The PHP

script is shown on

the next page.

CIS 4004: PHP – Part 1 Page 49 Dr. Mark Llewellyn ©

CIS 4004: PHP – Part 1 Page 50 Dr. Mark Llewellyn ©

Embedding Control Structures

• Now that we’ve seen most of the control structures in PHP, we

need to see how these control structures can be used more

effectively to produce XHTML elements (or any other output).

• PHP is an embedded language that enables you to code both your

XHTML and the supporting script in the same document.

• PHP takes this concept a bit further by allowing you to “turn off”

the PHP parser during a control structure and embed non-PHP

output without losing the logic provided by the control structure.

• The following example, illustrates this concept by displaying an

image in your XHTML document only when a variable is set to

true.

CIS 4004: PHP – Part 1 Page 51 Dr. Mark Llewellyn ©

Embedding Control Structures

CIS 4004: PHP – Part 1 Page 52 Dr. Mark Llewellyn ©

Embedding Control Structures

CIS 4004: PHP – Part 1 Page 53 Dr. Mark Llewellyn ©

Embedding Control Structures

• Although the previous solution works and for novice PHP

programmers it seems to be the most obvious technique, PHP

provides an alternate syntax that is actually allows the embedding

of the control structure into the markup.

• This alternative syntax is:

<?php . . .

if (conditional): ?>

- text/whatever that should be output but not parsed

<?php endif;

?>

• This is shown in the next version of this example on the following

page.

CIS 4004: PHP – Part 1 Page 54 Dr. Mark Llewellyn ©

Embedding Control Structures

